3.392 \(\int \frac{x}{\sqrt{1+c^2 x^2} (a+b \sinh ^{-1}(c x))} \, dx\)

Optimal. Leaf size=54 \[ \frac{\cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a+b \sinh ^{-1}(c x)}{b}\right )}{b c^2}-\frac{\sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a+b \sinh ^{-1}(c x)}{b}\right )}{b c^2} \]

[Out]

-((CoshIntegral[(a + b*ArcSinh[c*x])/b]*Sinh[a/b])/(b*c^2)) + (Cosh[a/b]*SinhIntegral[(a + b*ArcSinh[c*x])/b])
/(b*c^2)

________________________________________________________________________________________

Rubi [A]  time = 0.185191, antiderivative size = 50, normalized size of antiderivative = 0.93, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {5779, 3303, 3298, 3301} \[ \frac{\cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c^2}-\frac{\sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c^2} \]

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])),x]

[Out]

-((CoshIntegral[a/b + ArcSinh[c*x]]*Sinh[a/b])/(b*c^2)) + (Cosh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]])/(b*c^2)

Rule 5779

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^
(m + 1), Subst[Int[(a + b*x)^n*Sinh[x]^m*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[e, c^2*d] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{x}{\sqrt{1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sinh (x)}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^2}\\ &=\frac{\cosh \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^2}-\frac{\sinh \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\sinh ^{-1}(c x)\right )}{c^2}\\ &=-\frac{\text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right ) \sinh \left (\frac{a}{b}\right )}{b c^2}+\frac{\cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c^2}\\ \end{align*}

Mathematica [A]  time = 0.11135, size = 46, normalized size = 0.85 \[ -\frac{\sinh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )-\cosh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\sinh ^{-1}(c x)\right )}{b c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])),x]

[Out]

-((CoshIntegral[a/b + ArcSinh[c*x]]*Sinh[a/b] - Cosh[a/b]*SinhIntegral[a/b + ArcSinh[c*x]])/(b*c^2))

________________________________________________________________________________________

Maple [A]  time = 0.034, size = 58, normalized size = 1.1 \begin{align*}{\frac{1}{2\,{c}^{2}b}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\it Arcsinh} \left ( cx \right ) +{\frac{a}{b}} \right ) }-{\frac{1}{2\,{c}^{2}b}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\it Arcsinh} \left ( cx \right ) -{\frac{a}{b}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x)

[Out]

1/2/c^2/b*exp(a/b)*Ei(1,arcsinh(c*x)+a/b)-1/2/c^2/b*exp(-a/b)*Ei(1,-arcsinh(c*x)-a/b)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{c^{2} x^{2} + 1}{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/(sqrt(c^2*x^2 + 1)*(b*arcsinh(c*x) + a)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c^{2} x^{2} + 1} x}{a c^{2} x^{2} +{\left (b c^{2} x^{2} + b\right )} \operatorname{arsinh}\left (c x\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*x^2 + 1)*x/(a*c^2*x^2 + (b*c^2*x^2 + b)*arcsinh(c*x) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\left (a + b \operatorname{asinh}{\left (c x \right )}\right ) \sqrt{c^{2} x^{2} + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*asinh(c*x))/(c**2*x**2+1)**(1/2),x)

[Out]

Integral(x/((a + b*asinh(c*x))*sqrt(c**2*x**2 + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{c^{2} x^{2} + 1}{\left (b \operatorname{arsinh}\left (c x\right ) + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*arcsinh(c*x))/(c^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x/(sqrt(c^2*x^2 + 1)*(b*arcsinh(c*x) + a)), x)